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Problem overview

High-shear, low-CAPE (HSLC*) severe

convection is a considerable forecasting
challenge across the eastern U.S., particularly
during the cool season and overnight
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*Here, defined as SBCAPE < 500 J kg*, MUCAPE < 1000 J kg,
and 0-6 km bulk wind difference 2 18 m s1



Project overview

Five components:

« Composite maps and parameters:
— Determine typical features associated with severe/nonsevere HSLC events (Sherburn et al. 2017)
— Assess operational utility of existing and new forecasting parameters (Sherburn et al. 2017)

* Process studies 1: Case simulations to study mesoscale/synoptic scale evolution (King et al. 2017)
«  NWP studies: Case simulations to investigate resolution requirements
* Process studies 2: Idealized simulations to study convective-scale dynamics

« Statistical studies: Dynamical-statistical downscaling to investigate predictability
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HSLC composites: Key points

: Southeast HSLC
Created using NARR data and severe Significant Severe Reports
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HSLC composites: Updated forecasting parameter
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HSLC composites: MOSHE on SPC Mesoanalysis
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For now: Worth monitoring,
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to focus on maxima rather
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Process studies: Case study selection

Requirements:
At least “slight” risk for severe convection
SPC mesoanalysis CAPE < 1000 J kgt
0-3 km shear 218 m s

6 non-severe events (N0 storm reports)
11 severe events (multiple reports)

Simulations run with ARW-WRF, v3.5.1
50 vertical levels

6-h NAM 12-km analyses as IC/LBC
At least 30 hrs simulation time
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Process studies: Simulated environments

Jan. 29, 2008: 2pm — 6pm Dec. 22, 2007: 4pm — 8pm
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Process studies: Simulated environments

Feb. 18, 2009: 5pm — 9pm Jan 26, 2012: 5pm — 9pm
Surface 6, 10 m wind barbs [kts], 40 dBZ contour g_; Surface 86,, 10 m wind barbs [kts], 40 dBZ contour
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Process studies: CAPE Iincreases

SBCAPE [J/kg]
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Goal: Determine which processes are most important by
calculating contributions to CAPE from each process

CAPE increases could arise from:
Increased surface temperature

Increased surface moisture

Decreased temperature aloft
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Process studies: CAPE Iincreases

3 hour A SBCAPE
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Process studies: Potential instability

mb

January 30, 2013 simulated event

v Potentially unstable sounding (6,
decreasing with height)

Lifting = cooling and moistening
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Process studies: Synoptic ascent
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Process studies: Low-level shear
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Native .3.6-km

NWP studies: Resolution differences

Convective characteristics
well-handled at all resolutions,
though finer resolution
obviously captures more detalil

#-Native1.2-km

Differences clearer when evaluating fields
such as 10-m wind speeds...
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NWP studies: Resolution differences

) ] Half-Hourly Maximum 10-m Wind Speed Severe Distribution
Falrly Iarge difference between 3.6- 02/24 18 - 02/25/2011 06 UTC
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ldealized simulations: Motivation

Poor radar resolution and discrimination

Some potential radar precursors (such as
broken-S, right), but high associated FAR

Rapid destabilization

2300 UTC 24 October 2001

McCaul and Weisman (1996) W(m 3-1)
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Prior HSLC simulations mainly tropical mini-
supercells with insufficient resolution

Very few HSLC QLCS studies, limited in scope

QLCS mesovortex genesis mechanisms uncertain
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Two primary goals:

1. Determine environmental parameter space within HSLC
environments where long-lived, strong, low-level vortices
capable of producing severe hazards are likely

2. Determine precursors for the development of strong, low-level
vortices to determine the dynamics governing documented
sensitivities

We must first understand the links in the chain that extend from
the development of HSLC convection to the development of
strong, near-surface vortices therein before we can assess which
links are broken or missing.

Control base-state environment

NC STATE
UNIVERSITY




ldealized simulations: Sensitivity tests

1‘_”_TST 20111111/0000 ] ) 1"nTST 201144114/0000 (

Based on prior environmental studies
and skill tests leading to the
development of the SHERB/MOSH

Focus on varying low-level CAPE (here,
equivalent to low-level lapse rates) and
low/mid-level shear vector magnitudes
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ldealized simulations: Informed hypotheses

m? 2 Updraft Helicity Tracks, +LLs
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Black contours: 1-km vertical velocity
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ldealized simulations: Results e

Updraft Helicity Tracks, —LLs Updraft Helicity Tracks, —LLc

1000 S -
> :"J R s a"v » = v 0 = % . o’% 'ﬁ,"‘:_ iR & P e "
s 5 i 40 PR L RN :
- ! . . o K
¢ : 5
PR I ¥
750 30 gV 7 L g . : 30 *
20 . . g B '. ; ,. 2 d
i7 5 “ g-
500 10 ‘ g ‘ ! . 10 . :‘: 3 :
: . . P .
By ' . Y @
) " 4 d. e, : % i

A _.-" 3 . 4
s . 7 4 e
¥ LA SR Sl Ny
. - 3 YR = . ¥
& a y, _'_ " ‘.' &
Kt F B ¥ , . -.' D 3 d -
o : o i L A RS Y e
B T ARSI R A U
e Lol e . . ° y ¥
0 110 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

t {min)

Updraft Helicity Tracks, +LLs Updraft Helicity Tracks, +MLs Updraft Helicity Tracks, +LLc

1000 s od =2 D 7,
, :\3._ - Lok f 5 0,5’ . o © 50 y P ]'.,. . *
y 7 A oy > 4% o x : : e - 0
N 3
N § 4 30
Y " v §
. N : P 20
- $o S : Lo ;I
& : A
b g I
d o & X 0
= of ¥ , s s >

s -20 ) 4
. - N .
0 A , N '),
- ’ f -30 : Y o
e . y
N VP 4 ry A
. L — i
J [ ;’ B / 0 : T ;
) 3
r, N#: . s N LRy y B By : eh7 oS
Nc sT TE 0 110 120 130 140 150 160 170 180 130 200 210 220 230 240 250 260 270 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 e ”6’ f "‘%
~
. . < w3 %
A t (min) t {min) = ™ £ 2
=) g s
o = 3 H
UNIVERSITY =
>
LS ) orgror O



ldealized simulations: Results

Updraft duration vs. updraft intensity
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ldealized simulations: Ongoing tests

Maintain hodograph shape, vary orientation

relative to initiating boundary Maintain hodograph shape,
vary diameter of “ball cap”

Similar to prior hodograph sensitivity tests, but
based upon control hodograph in this matrix
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Statistical modeling: Research questions

Two primary questions:

1. Are there statistically significant differences between a
tornado-producing environment and an null environment at
operational grid lengths, as described by a set of pre-selected
variables in HSLC severe environments?

2. What statistical techniques (and in what order/combination)
can identify predictive variables, as well as determine the
variables’ corresponding weights of influence, to differentiate
severe/nonsevere environments?

Techniques include: Clustering, linear regression, development of
statistical models

Clustering technique
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Statistical modeling: Preliminary results
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Summary

Five components:

Composite maps and parameters (Sherburn et al. 2017):
— Favorable environment coupled with strong synoptic-scale forcing for ascent critical in discriminating between severe/nonsevere
— Combined factors distilled into MOSHE parameter available in beta form on SPC Mesoanalysis; adjustments maybe coming

Process studies 1: Case simulations to study mesoscale/synoptic scale evolution (King et al. 2017)
— Rapid destabilization evident in narrow temporal/spatial zone ahead of severe convection
— Low-level 6, advection and/or release of potential instability responsible for this destabilization

NWP studies: Case simulations to investigate resolution requirements
— 3.6-km, 1.2-km, and 400-m domains all represent convective mode and structure fairly well
— From 3.6-km to 1.2-km grid spacing, potential convergence of solution

Process studies 2: Idealized simulations to study convective-scale dynamics
— Sensitivity studies aimed at understanding prior environmental discriminators
— Increasing low-level shear or lapse rates appears to increase potential for strong low-level updrafts and vortices to interact

Statistical studies: Dynamical-statistical downscaling to investigate predictability
— In progress; several factors indicate large-scale forcing and low-level stability again among most important considerations
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